因子分析とは?メリットや結果の見方・活用例を解説

17 2024.06

データ分析手法

因子分析とは?

因子分析とは?

因子分析とは、消費者に調査した質問の結果から、消費者心理の背後にある「隠れた原因(潜在意識)」を発見するための分析手法のことです。
例えば国語や英語、数学や理科などの教科の点数があった時に文系の能力は○点、理系の能力は○点、という風に少ない変数で説明することができるのが因子分析の考え方です。
上記を簡単にまとめると、たくさんある変数から少ない変数で説明することができる分析手とイメージください。
因子分析の概要図

因子分析の目的

因子分析を行う目的は、消費者行動の背後にある「潜在意識」を導き出すことにあり、現在マーケティングの現場でよく使われている分析手法の1つです。
この場合の潜在意識とは、消費者の持つ「なんとなく商品を選んだ理由」という無意識のことです。導き出された潜在意識を基に、消費者の持つ潜在的なニーズや価値観を可視化することが可能です。
因子分析は、消費者アンケートのサンプルが多くなるほど、より導き出された潜在意識に対する確信性が高くなります。
マーケティングリサーチでの利用例

マーケティングリサーチでの利用例

因子得点を使ってアンケート回答者のグループ分けをする

データを比較する際に年代(20代や30代)などのデモグラフィック情報だけではなく、サービスやコスパなどを重視して比較をしたい場合は、因子得点を使うことでサービス重視層やコスパ重視層などにグループ分けをした上で分析することができます。
マーケティングリサーチでの利用例①

マーケティングリサーチでの利用例①

たくさんの項目を少ない変数で要約(説明)したい

ブランドのイメージやカテゴリーの重視点、商品の評価やテーマ、満足度などを要約したい場合に使用されます。
単純に要約(説明)するだけではなく、そもそもどういう因子が背後にあって、それがどれくらいそれぞれの項目に影響しているかという構造も明らかにすることができます。
また、応用として因子分析を利用して重回帰分析で使用する説明変数をまとめることもあります。
マーケティングリサーチでの利用例②

マーケティングリサーチでの利用例②

因子分析で使うデータと結果の見方

使うデータ

使う(使える)データは数量データです。
男性、女性のようなメイン尺度と言われるデータは使えません。
よくある例

よくある例

上記のようなマトリクスシングル形式のデータが利用できます。
これだけに限らず、数量データであれば先程の教科の例のように国語の点数なども利用できます。

結果の見方

まず最初に見ていただくのは、どのような因子が抽出されたのか、という点です。
因子分析の結果①

因子分析の結果①

上記の場合、9個の項目があって3つの因子(商品力、接客力、ブランド力)が抽出されたという結果になっています。
次に因子と質問項目の関係性を確認します。
因子分析の結果②

因子分析の結果②

上記の画像の緑枠で囲われた「因子不可量」を見てください。
枠内の数値のうち、関係性が深いものに色が塗られています。

例えば商品力の場合、
・品揃えがいい
・話題の商品がある
・独自商品が魅力的
という3つの項目となります。

色を塗る基準は調査会社やリサーチャーによって変わってきます。
因子1の商品力はどの項目と関係性が強いか、因子2の接客力はどの項目と関係性が強いか、というように因子と質問項目の関係性を確認することが重要です。

もし余裕があれば因子ごとにどれくらい寄与しているか、という点を確認してもいいかもしれません。
因子分析の結果③

因子分析の結果③

上記図の因子寄与と寄与率で確認します。
因子1がどれくらいこの質問項目のことを説明できているか、というのが寄与率になります。

因子分析で覚えておいたほうがいい用語の説明

共通性:観測変数(質問項目)が共通因子によって説明される程度を表すもの。
因子得点:アンケート回答者ごとに、それぞれの共通因子をどれくらい持っているかを表すもの。

【補足】
調査会社に因子分析を依頼すると、結果に以下のような説明が記載されていることがあります。

“20項目の質問項目を用いて因子分析を行った。
因子の抽出には最尤法を用いた。
因子数はスクリープロットにより判断し4因子とし、プロマックス回転を行った。”


上記は分析のやり方についての説明なので、結果を見るだけの場合は理解しなくても大丈夫です。

▼参考(覚えなくても大丈夫)
・因子の抽出方法:主因子法、最小二乗法、最尤法など
・軸の回転
 -直行回転:バリマックス、クォーティーマックスなど
 -斜交回転:プロマックス回転、直接オブリミンなど
・その他:スクリープロット、初期解など
因子分析をする際の注意点

因子分析をする際の注意点

注意点は4つあります。
因子分析をする上で調査設計は非常に重要ですので参考になれば幸いです。

①因子名は分析者の主観でつけている
分析者が関係性が高い項目を見ながら主観でつけているので、統計ソフトなどで勝手に出てくるものではありません。

②全ての観測変数(質問項目)を使わないことが多い
因子分析をやった結果、複数の項目にまたがって関係性が強い項目だったり、逆に全部の因子に関係性が強くない項目が出てしまったりした場合、それらの項目を外してもう一度因子分析をすることがあります。

③1つの因子を説明するのに最低でも3〜4つの観測変数(質問項目)が必要
因子に関わるものが少ないと因子が出てこないこともあるのでご注意ください。

④サンプル数は観測変数の5〜10倍程度が目安
因子分析と主成分分析の違い

因子分析と主成分分析の違い

因子分析と主成分分析は似ているところが非常に多い分析手法です。
因子分析と主成分分析の違いについては分析方法・向いている使い方の2点でご説明します。

①分析方法の違い
因子分析は1段階で分析します。
調査した複数のデータの数値の高低から、共通の原因を探し出し、最適な名称を設定するだけで、いくつかの共通の原因を設定して、データを振り分けることが可能です。
一方で主成分分析は2段階で分析します。調査した複数のデータの数値の高低から複数項目を設定しそれぞれ数値で評価します。さらにもう1回複数項目を新しい基準でまとめ直し、数値を付け総合的に評価することが可能です。こちらは作成に若干手間がかかります。

➁向いている使い方
因子分析は分析結果から、調査したデータの仮説検証に向いています。分析者の主観が入りますが、何かしらの原因を探る時におすすめです。
主成分分析は分析結果から、総合力を導き出し、ランキングなどの評価をしたい時に向いています。客観的に分析することができ、決められた基準で評価されるので高い正確性を担保することが可能です。
因子分析と重回帰分析の違い

因子分析と重回帰分析の違い

因子分析と重回帰分析の違いは目的・向いている使い方・解釈の仕方の3点でご説明します。

①分析目的の違い
因子分析は、調査したデータの数値を基に見えない原因を探り出す目的で使われます。
重回帰分析は、ある結果を予測したい時、複数の変数との相関関係から数式を使って導き出す目的で使われます。

➁向いている使い方
因子分析は、顧客へのアンケート調査のデータの数値を使って、顧客の潜在的なニーズや価値観を探り出したい時に向いています。
重回帰分析は、顧客がある商品を買う時に関係するいくつかの条件を数式に当てはめて予測したい時に向いています。

➂解釈の仕方
因子分析は分析によって探り出した設定は、作成した本人の解釈で作っているので若干正確性に疑問が残ります。
重回帰分析はあらかじめ作った数式に数値を入れるだけなので、人の解釈が入り込む余地が小さく正確な評価をすることが可能です。

まとめ

今回は、因子分析について、活用シーンから結果の見方・注意点をわかりやすく解説についてご紹介しました。
因子分析は一見難解に感じる分析手法ですが、基本がわかればだれでも簡単に使いこなすことができます。とくに消費者の行動心理を分析したいマーケティングの現場には最適です。注意点は分析によって探り出した原因の設定を1人だけで行うと偏りがでてしまうかもしれない点です。この点を回避するには異なる解釈ができる複数人で設定した方がよいでしょう。因子分析を消費者行動心理を理解するツールとして、ぜひ利用してみることをおすすめします。

セルフ型ネットリサーチツールのご案内

本記事を運営するマーケティングアプリケーションズは、セルフ型ネットリサーチツールのSurveroid(サーベロイド)を提供しています。
アンケート作成、配信、集計までをセルフで完結させることができます。
上記作業を調査会社に委託する場合と異なり、ご自身で実施できることからスピード感をもって「安価」にアンケート調査ができます。(ご登録したその日からアンケート作成、配信が可能です。)
これからリサーチの予定がある方はぜひ一度サービス内容をご確認いただければと思います。
45 件

Related Contents

Ranking

  1. アンケート結果の集計方法からExcelでのグラフの作り方、効果的な分析方法を紹介
  2. t検定とは?やり方、分析から分かることを解説
  3. マトリックス表とは何か分かりやすく解説!意味、種類、作り方などを紹介
  4. アンケート調査票の作り方と例文【テンプレート付き】設問のコツも紹介
  5. Googleフォームの作り方を徹底解説!メリットや便利な使い方まで紹介

Popular Posts

  1. t検定とは?やり方、分析から分かることを解説
  2. 主成分分析とは?事例を用いて結果の見方や注意点をわかりやすく解説
  3. 因子分析とは?メリットや結果の見方・活用例を解説
  4. クラスター分析とは?事例を用いてやり方や結果の見方を解説
  5. 重回帰分析とは?ビジネスにおける活用シーンや注意点・結果の見方を解説